Single Event Effects and Their Mitigation at the Collider Detector at Fermilab

R.J. Tesarek
Fermilab

for the CDF Radiation Monitoring Group
CDF-II Detector (G-rated)

\[E_{cm} = 1.96 \text{ TeV} \]
CDF Detector (Adults Only)

Readout, control and support electronics located on the detector:

- 5kW custom low voltage (LV) switching power supplies
- Commercial remotely operated high voltage (HV) switching power supplies
- Custom digitizing and readout electronics
 - 9U VME crate (FPGA based)
 - 1 kW custom low voltage (LV) linear power supplies.
- Custom digitizing and readout electronics
 - 6U VME crate (FPGA based)
Operational Problems

Custom low voltage switching power supplies
- catastrophic component failure only with beam present
- average ~3 failures/week
- 12 failures in single day (St. Catherine’s day massacre)
- single event burnout (SEB) of power MOSFET

Commercial high voltage switching power supplies (CPU controlled)
- “soft” failure when beam present
- loss of communication/cpu hang
- loss of calibration constants
- 10% of non-accelerator down time due to problem+recovery

Custom detector readout electronics (Shower Maximum, SMX, system)
- soft failure when beam present
- only systems near beam line fail
- communication interrupt/hang
- 6% of non-accelerator down time due to problem+recovery
Low Voltage Power Supply Failures

Failure Characteristics
- **Position Dependent**
- **Beam Related**

Experiments show focusing quads are a line source of radiation.

Failure Locations

SVX Readout

- **West**
- **East**

COT Readout

- **West**
- **East**

- **N** = north
- **S** = south
- **T** = top
- **B** = bottom

Silicon detector readout
Central tracker readout

protons
antiprotons

NORTH
Low Voltage Power Supply Failures

Power Factor Corrector Circuit

Most failures were associated with high beam losses or misaligned beam pipe

> Power MOSFET SEB (radiation induced)

epoxy covering fractured

silicon in MOSFET sublimated during discharge through single component
Single Event Burnout (SEB)

SEB Features
- catastrophic
- beam related
- damage at low doses
- depends on bias voltage

SEB cross section measurement

Solution (lower Vbias)
- Factor of 50 reduction in radiation sensitivity
- No failures in > 2 years operation

What about radiation?

Test beam data, 200 MeV protons

Indiana Cyclotron

R.J. Tesarek, C. Rott, R. Napora, C. Rivetta
High Voltage Power Supplies

Commercial system (CAEN SY527 mainframe)

Only system in collision hall fail

Failure Modes:

<table>
<thead>
<tr>
<th>Observed Failure</th>
<th>Recovery Action</th>
<th>Likely Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Communication lost</td>
<td>CPU reset</td>
<td>SEU in CPU/EPROM</td>
</tr>
<tr>
<td>b. Power supply modules spontaneously turn off</td>
<td>turn on HV</td>
<td>SEU in KILL logic (FPGA)</td>
</tr>
<tr>
<td>c. Garbled information from crate (ie, voltage reads 10.0V, nominal 150.0V)</td>
<td>CPU reset</td>
<td>SEU in RAM memory</td>
</tr>
</tbody>
</table>

Assistance from manufacturer: **modify firmware to shorten recovery time**

- enable CPU watchdog
- enhance error checking

Anticipate order of magnitude reduction of down time
Shower Maximum (SMX) Readout

Custom designed system

Communication lost in system

- only occurs for systems in highest radiation areas
- requires power cycle to recover
- ram based calibrations must be restored (re-calibration)
- 30 minute recovery time
- failed component not yet identified (2700 FPGAs)

Modify procedures to always write calibrations to non-volatile (FRAM) memory

- recovery time reduced to few minutes.
Radiation Shielding?
Scintillation counter measurements show low beta quadrupoles form a line source of charged particles.

Power supply failure analysis shows largest problem on the west (proton) side of the collision hall.

Shielding reduces ionizing radiation by 25%

CDF Detector w/ additional shielding
Collision Hall Ionizing Radiation Field

Thermal luminescent dosimeter (TLD) measurements
Shielding installed on proton side only.

\[\text{Ratio} = \frac{R_{\text{shielding}}}{R_{\text{no shielding}}} \]

R.J. Tesarek
IEEE-NSS/MIC El Conquistador Resort, Puerto Rico
24-30 October 2005
Simulated Radiation Environment

Detailed MARS simulation of:

- accelerator & beam transport
- collision hall & detector

![Graphs showing simulated radiation environment with various fluxes for Neutrons, Charged Hadrons, Gammas, and Muons.](image-url)
Halo (Beam Loss) Reduction

Vacuum problems identified in 2m long straight section of Tevatron (F sector)

Improved vacuum (TeV wide)

Commissioning of collimators to reduce halo

> Halo/proton reduced by factor of 10.

> Physics backgrounds reduced by ~40% in some triggers

Requires good beam quality monitoring

R. Moore, V. Shiltsev, N.Mokhov, A. Drozdhin
Summary

Single event effects (S.E.E.) observed at CDF in multiple systems/components

At present ~16% of down time traced to S.E.E.

Attack problems on multiple fronts:

- identify problem component
- modify operating conditions
- understand radiation and shield where possible
- reduce radiation from accelerator (collimation, improved operation)
- modify software/firmware to make system failure tolerant
- modify system/procedures to reduce recovery time after failure

Work continues...
References (Incomplete List)

General:
- http://ncdf67.fnal.gov/~tesarek

CDF Instrumentation:
- A.Bhatti, et al., *CDF internal note*, CDF 5247.

Beam Halo and Collimation:

Radiation:
Active Dosimeters

SEU counters (memories) >20 MeV hadrons

PIN diodes 1 MeV n equivalent

Thijs Wijnands, Christian Pignard

Located near sensitive electronics

Readout at ~1 Hz

LHC prototype

RadFETs γ–e dose
CDF Detector (Adults Only)

Power Supplies on the CDF Detector

- 36 switching supplies (5kW)
 - 28 “shielded”
- 38 linear supplies (1kW)
 - all “shielded”
- ~200 linear supplies (0.3kW)
 - all “shielded”

“shielded” means no line of sight to beam.

- Switching Power Supplies (5kW)
- Linear Power Supplies (1kW, 0.3kW)
- HV Mainframe
Typical Store

Beam Parameters:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Rate (kHz)</th>
<th>Limit (kHz)</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protons</td>
<td>5000 - 9000</td>
<td>10^9 particles</td>
<td></td>
</tr>
<tr>
<td>Antiprotons</td>
<td>100-1500</td>
<td>10^9 particles</td>
<td></td>
</tr>
<tr>
<td>Luminosity</td>
<td>10 - 50</td>
<td>10^{30} cm$^{-2}$s$^{-1}$</td>
<td></td>
</tr>
</tbody>
</table>

Losses and Halo:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Rate (kHz)</th>
<th>Limit (kHz)</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>P Losses</td>
<td>2 - 15</td>
<td>25</td>
<td>chambers trip on over current</td>
</tr>
<tr>
<td>Pbar Losses</td>
<td>0.1 - 2.0</td>
<td>25</td>
<td>chambers trip on over current</td>
</tr>
<tr>
<td>P Halo</td>
<td>200 - 1000</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pbar Halo</td>
<td>2 - 50</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Abort Gap Losses</td>
<td>2 - 12</td>
<td>15</td>
<td>avoid dirty abort (silicon damage)</td>
</tr>
<tr>
<td>L1 Trigger</td>
<td>0.1-0.5</td>
<td></td>
<td>two track trigger (~1 mbarn)</td>
</tr>
</tbody>
</table>

Note: All number are taken after scraping and HEP is declared.