Radiation Environment and Damage in the CDF Tracking Volume

R.J. Tesarek
Fermilab

(CDF Radiation Monitoring Group)

Y.C.Chow³, S.D’auria⁴, A.Hocker⁵, K.Kordas⁶, L.Nicolas¹,⁴, S.Mcgimpsey¹, R.J.Tesarek¹, R.Wallny³, S.Worm²

¹Fermilab, Batavia, IL USA
²Rutgers University, Piscataway, NJ USA
³University of California, Los Angeles, CA USA
⁴University of Glasgow, Glasgow UK
⁵University of Rochester, Rochester, NY USA
⁶University of Toronto, Toronto Ontario, CA
Outline

• Introduction
 – Accelerator environment
 – Detector environment
 – Why these measurements

• TLD Radiation Measurements
 – Thermal Luminescent Dosimeters
 – Exposure statistics
 – Data
 – Model

• Diode Radiation Measurements
 – PIN diodes
 – Calibration with TLD data

• Summary & Conclusions
Experiment Environment

Accelerator:
- 980 GeV proton(p)/antiproton(pbar) beams
- 36 bunches ~10^{10} part/bunch
- Beam currents p:pbar = 10:1
- Radiation from beam halo
 - Beam-gas collisions
 - Interactions in collimators
Experiment Environment

Detector:
Cylindrically symmetric detector at collision point.
- Collisions can occur every 396ns
- ~10 charged particles/collision
- Radiation from collisions
 - Ionizing radiation (γ, charge particles)
 - Neutrons
Radiation Measurement

Goal:

Accurately measure radiation field
⇒ Predict silicon detector’s useful lifetime

Considerations:

Redundancy
Absolute Calibration
Accuracy

Detector Technologies:

Thermal Luminescent Dosimeters (TLDs)

+ Industry standard
+ Good precision
+ Large dynamic range: \((10\mu\text{Gy} - 2\text{kGy})\)
+ Calibrate with \(^{137}\text{Cs}(\gamma), \text{~}^{252}\text{Cf}(n)\)
- Harvest & read each chip
- Large amount of handling

PIN Diodes

+ Large dynamic range: \((10\text{Gy} - 10\text{MGy})\)
+ Remote readout
- Temperature history
- In-situ calibration
Measurement Technique

TLDS: (~1000 dosimeters in 145 locations)

- **2 types of dosimeters**
 - TLD-700 (7LiF): ionizing radiation
 - TLD-600 (6LiF): ionizing radiation & low energy neutrons ($E_n < 200$ keV)

- **Calibration**
 - 1% reproducibility, 3% chip-to-chip variation
 - **Ionizing radiation:** 10 mGy exposure to 137Cs
 - **Neutrons:** 10 mGy exposure to 252Cf

PIN Diodes: (12 diodes in 10 locations)

Cross calibrated with TLDs

Portland, OR
Exposure Conditions

Beam conditions:

- **Collisions (luminosity at CDF):**
 - Measured by Cherenkov radiation counters (A. Sukhanov N11-1)

- **Losses of incoming p and pbar:**
 - Monitored by scintillator counters near beam pipe on either side of CDF

Three TLD exposure periods

<table>
<thead>
<tr>
<th>Period</th>
<th>Beam ($x10^{18}$)</th>
<th>Losses ($x10^9$)</th>
<th>Ldt (pbarn$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb.– May 2001</td>
<td>0.702</td>
<td>15.3</td>
<td>0.058</td>
</tr>
<tr>
<td>May– Oct. 2001</td>
<td>15.6</td>
<td>40.9</td>
<td>12.3</td>
</tr>
</tbody>
</table>

Feb. – May: p-loss/collision=$264x10^9$/pbarn$^{-1}$
May – Oct.: p-loss/collision=$3.3x10^9$/pbarn$^{-1}$
Oct. – Jan.: p-loss/collision=$1.6x10^9$/pbarn$^{-1}$

NOTE: 1 pbarn$^{-1}$ ~ 5x10^{10} p-pbar collisions
TLD Data (Ionizing Radiation)

Loss dominated
20% collisions

Collision dominated
82% collisions

Collision dominated
91% collisions

Portland, OR
TLD Data (Neutrons)

Loss dominated data

Collision dominated data

Portland, OR
Separating Collision/losses

Assume radiation is a linear superposition of collisions and losses

\[D_1(x,y,z) = l_1 L(x,y,z) + c_1 C(x,y,z) \]
\[D_2(x,y,z) = l_2 L(x,y,z) + c_2 C(x,y,z) \]
A Simple Model

Use previous experience to build a simple model of the radiation field.*

- Assumptions:
 - Radiation has cylindrical symmetry about the beam
 - Field follows power law: \(D \sim A r^{-\alpha} \)
 \(\alpha = \) power law exponent
 \(A = \) Normalization
Ionizing Radiation Fields

Collisions

Proton Losses

Portland, OR
PIN Diodes

- TLDs → Radiation field
- PIN diodes scale radiation

![Graph showing the relationship between bias voltage and current for different diodes.](image1)

![Graph showing the relationship between bias voltage and current for different r values.](image2)
Comparison with Si Data

• Si bias current increase rate measurements
 - Correct for temperature (8→20°C)
 - Include $\alpha_{\text{damage}} = 3.0 \times 10^{17}$ A/cm
 - Extrapolate TLD results 17cm→1.7cm
Summary

• Installed ~1000 TLDs, 12 diodes in CDF.
 – Photon & neutron measurements.
 – Bias current increase calibrated with TLDs.

• TLDs yielding accurate measurements of radiation environment in CDF.
 – γ radiation \sim5% uncertainty.
 – Multiple measurements internally consistent
 – Separate fields from collisions and losses.

• New details
 – Predict radiation for given beam conditions
 – PIN diodes to scale radiation field
 – Early prediction of detector lifetime

• Quantitative agreement between Si detectors and TLD data.
Si Bias Current Data

Si detector bias current vs collisions

- Calculate I_{bias}/volume of each sensor
- Correct to 20°C
TLD Calibrations

- TLD non-linearity calibration
Neutron Calibration

$^6\text{Li}(n,t)^4\text{He}$

Portland, OR
Neutron Calibration

- 252 Cf Spectrum

![Graph showing the 252 Cf spectrum](image)

\[\frac{dN}{dE} \text{ (neutrons/MeV)}\]

\[^{252}\text{Cf} \text{ spontaneous fission}\]

\[N_{cf}/\text{fission} = 20\]