A Measurement of the Radiation Field in the CDF Tracking Volume

R.J. Tesarek
Fermilab

(CDF Radiation Monitoring Group)
S. D’Auria\(^3\), A. Hocker\(^4\), K. Kordas\(^5\), S. McGimpsey\(^1\),
R.J. Tesarek\(^1\), S. Worm\(^2\)

\(^1\)Fermilab, Batavia, IL USA
\(^2\)Rutgers University, Piscataway, NJ USA
\(^3\)University of Glasgow, Glasgow UK
\(^4\)University of Rochester, Rochester, NY USA
\(^5\)University of Toronto, Toronto, Canada

19 July 2002 R.J. Tesarek - Fermilab CMS Tracker Week
CERN
Why Measure Radiation?

Motivation

- Correlate information w/ beam
- Predict radiation damage to inner devices

Method: Thermal Luminescent Dosimeters

- TLD features
 + Continuously integrates radiation
 + Passive
 + Large dynamic range 1mRad – 200kRad
 + On-site TLD reader “fast turn around”
 + Industry standard
- Requires harvesting + reading individual dosimeters
- Large amount of handling
Thermal Luminescence

Ionizing radiation

\[\text{Detection of ionization from } ^3\text{H} \]

Neutron absorption

\[^6\text{Li} + n \rightarrow ^3\text{H} + \alpha \]

Detect ionization from \(^3\text{H}\)
Measurement Technique

“The Devil is in the details…”

Considerations:
- Redundancy multiple measurements
- Low mass light materials
- Low profile thin materials
- γ, n meas. 2 types of dosimeters

Implementation

- 2 types of dosimeters in a holder
 - TLD-700 7LiF γ sensitive
 - TLD-600 6LiF γ, n sensitive
- 3 TLD chips of each type per holder

0.8mm thick FR-4
TLD Locations

<table>
<thead>
<tr>
<th>Location</th>
<th># φ</th>
<th># z</th>
<th># r</th>
<th>Total # Holders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug faces</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>SVX</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>ISL</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Total # TLD chips</td>
<td></td>
<td></td>
<td></td>
<td>916</td>
</tr>
</tbody>
</table>

19 July 2002 R.J. Tesarek - Fermilab CMS Tracker Week CERN
TLD Locations

How do we install holders?
Magnet Bore

Finding the leaders in CDF
Calibration

All dosimeters of each type from a single batch
- Chip to chip response variation ~3%

All dosimeters γ response calibrated w/ 1 Rad exposure to a 137Cs source
- Reproducibility <1% variation
- Absolute scale ~1% uncertainty

19 July 2002 R.J. Tesarek - Fermilab

CMS Tracker Week
CERN
Neutron Calibration

- 10 mRad exposure to 252Cf
 - 15% variation
 - 10% scale uncertainty
TLD Non-linearity

LiF exhibits super linearity $\sim 100\text{Rad}$

19 July 2002 R.J. Tesarek - Fermilab

CMS Tracker Week

CERN
Dosimetry

Ionizing Radiation Dosimetry

\[
D_\gamma = C(kR)kR - D_c
\]

- **R** TLD reading (nC)
- **k** \(1/(1 \text{ Rad response}) \) (Rad/nC)
- **C(kR)** non-linearity correction
- **D_c** control dose (Rad)

Neutron Radiation Dosimetry

\[
D_n = \{C(kR)kR - D_c\} - D_\gamma
\]

- **R** TLD reading (nC)
- **k** \(1/(1 \text{ Rad response}) \) (Rad/nC)
- **C(kR)** non-linearity correction
- **D_c** control dose (Rad)
- **D_\gamma** ionizing radiation dose (Rad)
Beam Monitoring

Losses (beam shower counters)
- Scintillation counters

Radiation (beam loss monitors)
- Ionization chambers
- Wagon wheel (TLDs)
- BLMs
- Luminosity Monitor
Exposure Statistics

Beam Statistics

<table>
<thead>
<tr>
<th></th>
<th>Feb. - May</th>
<th>May - Oct.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>0.0703</td>
<td>1.56</td>
<td>10^{19}</td>
</tr>
<tr>
<td>Pbar</td>
<td>0.0082</td>
<td>0.137</td>
<td>10^{19}</td>
</tr>
<tr>
<td>P-losses</td>
<td>1.06</td>
<td>2.84</td>
<td>10^9</td>
</tr>
<tr>
<td>Pbar-losses</td>
<td>0.14</td>
<td>0.71</td>
<td>10^9</td>
</tr>
<tr>
<td>$\int L dt$</td>
<td>0.058</td>
<td>10.7</td>
<td>pb^{-1}</td>
</tr>
</tbody>
</table>

Beam Loss Monitors

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inner</td>
<td>Outer</td>
</tr>
<tr>
<td>Proton</td>
<td>7.0</td>
<td>6.1</td>
</tr>
<tr>
<td>Pbar</td>
<td>241</td>
<td>224</td>
</tr>
</tbody>
</table>

Feb. - May loss dominated
May - Oct. collision dominated
BLMs insensitive to collisions
Data

Feb - May 2001 Exposure

- \(r = 34 \text{ cm} \) (ISL space tube)
- \(r = 17 \text{ cm} \) (SVX space tube)

May - Oct 2001 Exposure

- \(r = 34 \text{ cm} \) (ISL space tube)
- \(r = 17 \text{ cm} \) (SVX space tube)

19 July 2002 R.J. Tesarek - Fermilab CMS Tracker Week CERN
Neutrons

Feb. – May 2001

Loss dominated

May – Oct. 2001

Collision dominated

protons antiprotons

19 July 2002 R.J. Tesarek - Fermilab

CMS Tracker Week

CERN
Collisions & Losses

Motivation:
- Dose different for collisions/losses
- Collisions should dominate losses even more in the future
 ⇒ Better prediction of radiation field

Method: Linear model

\[D_1 = L_1 d_L + C_1 d_C \]
\[D_2 = L_2 d_L + C_2 d_C \]

- \(L_i \): measured losses
- \(C_i \): measured collisions (luminosity)
- \(d_L \): dose/unit losses
- \(d_C \): dose/unit luminosity

Solve for \(d_L \) and \(d_C \)
 ⇒ Unnecessary for neutrons
Collisions & Losses

Collisions

- SVX space tube (r=17.7cm)
- ISL space tube (r=34.7cm)
- p-Loss Scale Uncertainty

Proton Losses

- SVX space tube (r=17.7cm)
- ISL space tube (r=34.7cm)

May - Oct: $L/C = 3.9 \times 10^9 / pb^{-1}$

19 July 2002 R.J. Tesarek - Fermilab CMS Tracker Week CERN
Finding the Beam w/ TLDs

Beam and Detector cylindrically symmetric

Beam Axis
Detector Axis
Radiation Field

\[\phi \text{ (Radians)} \]

19 July 2002 R.J. Tesarek - Fermilab CMS Tracker Week
CERN
Data (Φ)

Fit $\text{Acos}(\phi - \phi_0) + D_{\text{avg}}$ \hspace{1cm} ϕ_0: 1.7–2.0

Measured beam offset
$\phi_0=1.81$ radians
$d_0=4.1$ mm
Modeling

Use previous experience to build a simple model of the radiation field*

Assumptions

- Radiation has cylindrical symmetry about the beam.
- Field follows a power law in $1/r$.

Fit the data to the following form:

$$D(x,y) = A \{ (x-x_0)^2 + (y-y_0)^2 \}^{-\alpha/2}$$

- $D(x,y)$: radiation dose
- A: absolute normalization
- (x_0, y_0): beam position offset
- α: power law exponent

Note: Run I radiation damage profile yields $\alpha = 1.6 - 1.7$.
Results

Statistical uncertainties only!

19 July 2002 R.J. Tesarek - Fermilab CMS Tracker Week CERN
Ionizing Radiation Map

10.7 pb\(^{-1}\) delivered luminosity
Silicon Leakage Currents

- Leakage Si current increase rate measurements
 - Correct for temperature (8 → 20 C)
 - Include $\alpha_{\text{damage}} = 3.0 \times 10^{-17}$ A/cm

![Graph showing fluence vs. ϕ (radians)](image)

- Si I_{leak} data ($r = 1.7$ cm)
- TLD + Model prediction

Preliminary
CMS Projections

Conversion Factors

\[\gamma: \text{1 rad} = 3.8 \times 10^7 \text{MIPs/cm}^2 \]
\[n: \text{1 rad} = 3.2 \times 10^8 \text{n/cm}^2 \text{ (thermal)} \]

Assumptions:

- Scaling of CDF measurements
- \(L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \)
- \(10^7 \text{ sec/year} \)

CMS expected dose/year

Inner PIXEL detector (r=4.3cm)

\[\gamma: \ 6.6 \times 10^{14} \text{ MIPs/cm}^2 \]
\[n: \ 1.9 \times 10^{14} \text{n/cm}^2 \text{ (thermal)} \]
Summary

• Installed ~1000 TLDs in CDF
 - Photon and neutron measurements

• TLDs yield accurate measurements of radiation environment in CDF
 - γ radiation ~5% uncertainty
 - Separate fields from collisions and losses
 - N radiation ~20% uncertainty

• Qualitative agreement with expectations
 - Beam losses & collisions
 - Neutrons field

• New details emerging
 - Predict radiation for given beam conditions
 - Early prediction of detector lifetime
 - Naïve model from early experience (Tevatron Run I) needs update

• Semi quantitative agreement with Si data